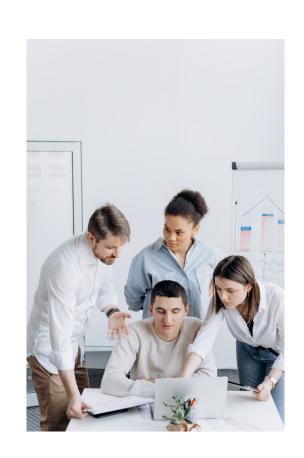


I want to continuously become better

CCS- KEY POINTS FOR THE INSPECTOR TO CONSIDER

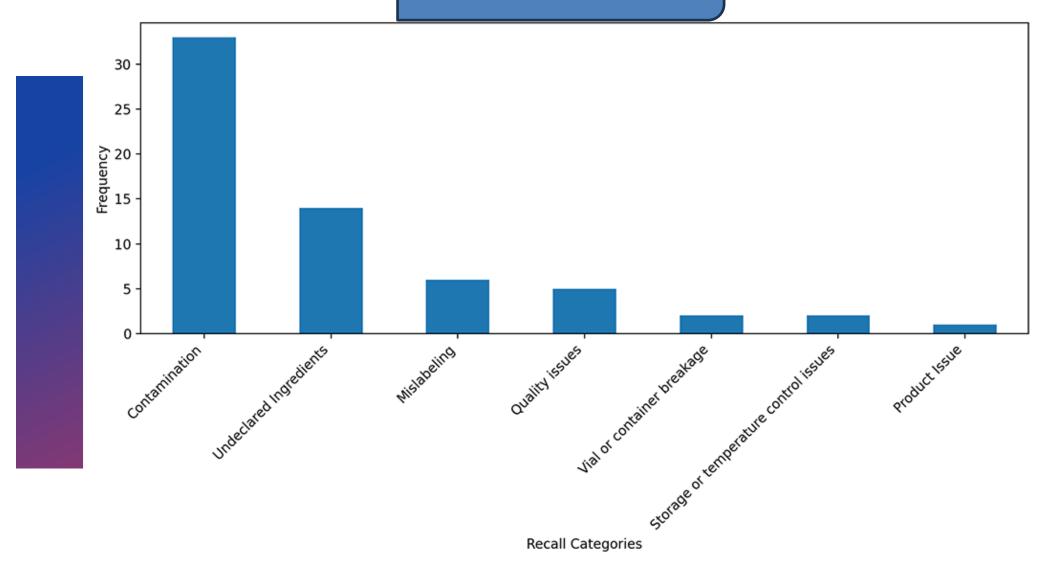
WAYNE MÜLLER
CHAIR OF GMP TC AMA
CHIEF INSPECTOR SAHPRA



10th PAN-RUSSIAN GMP CONFERENCE

- ✓ PLEASE ASK WE ARE HERE TO INTERACT AND HOPEFULLY FIND SOME ASPECTS TO APPLY BACK IN OUR INSPECTORATES
- SO DON'T BE HESITANT AND AFTERWARDS SAY
- WHY DIDN'T I ASK
- IT'S YOUR WORKSHOP and we all here to learn and improve our skills
- Interact and Engage (even at breaks)

3 x E (Energized, Enthused, EXCITED)


WILL THIS BABY GET BETTER IT IS UP TO YOU

Failure of CCS

FAILURES OF CCS

A string of deadly incidents connected to contaminated and substandard medicines have emerged in recent months.

Cough syrups contaminated with ethylene glycol (EG) and diethylene glycol (DEG) have led to deaths of 70 children in The Gambia, more than 200 in Indonesia, and – most recently – 19 in Uzbekistan.

Eye drops were recalled in the U.S. in 2023 and early 2025 due to bacterial and fungal contamination from unsanitary manufacturing conditions, leading to severe infections, vision loss, and even death.

WHAT IS CONTAMINATION

Contamination is defined as the undesired introduction of impurities of a chemical or microbiological nature, or of foreign matter, into or onto a raw material, intermediate, or API (Active Pharmaceutical Ingredient) during production, sampling, packaging or repackaging, storage or transport

GUIDELINES

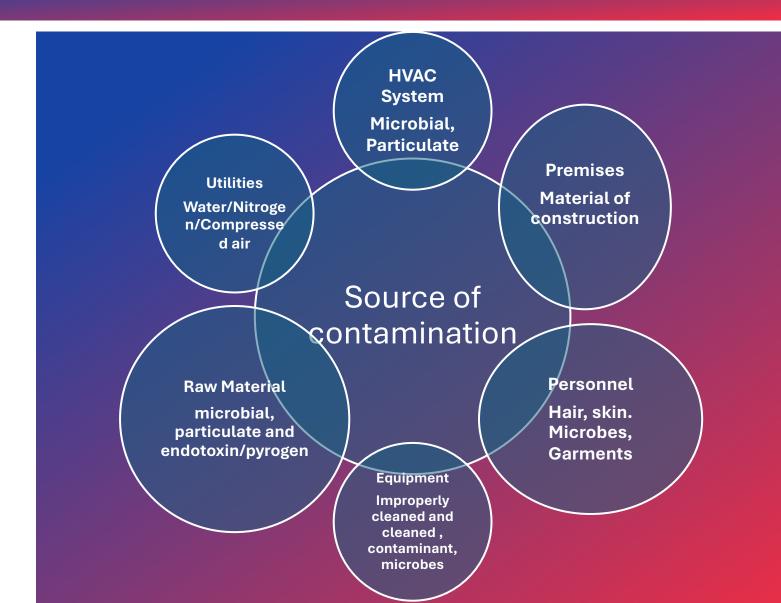
Annex 1, in sections 2.3 and 2.4, sets out expectations in relation to assessing and assuring the effectiveness of the contamination controls and the monitoring methods that are in place.

WHO TRS 1044 annex 2 (Sec 2.3);

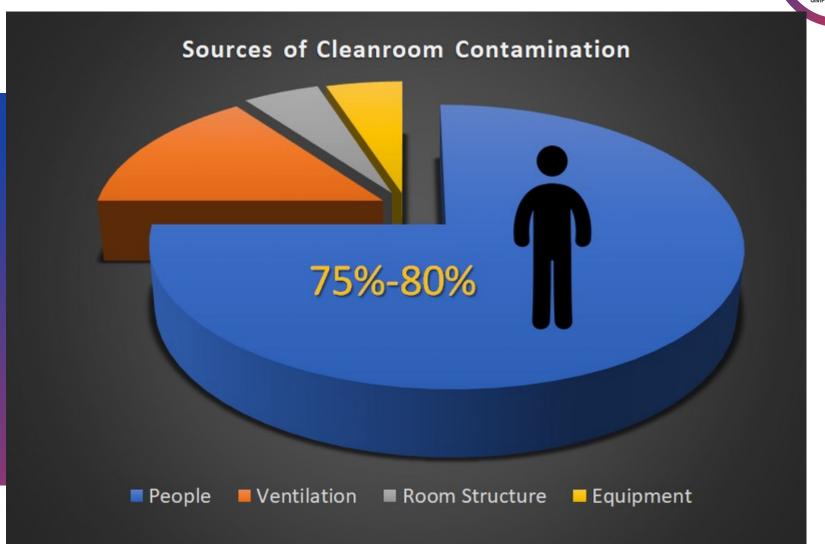
'A CCS should be implemented across the facility in order to define all critical control points and assess the effectiveness of all the controls (design, procedural, technical and organizational) and monitoring measures employed to manage risks to medicinal product quality'

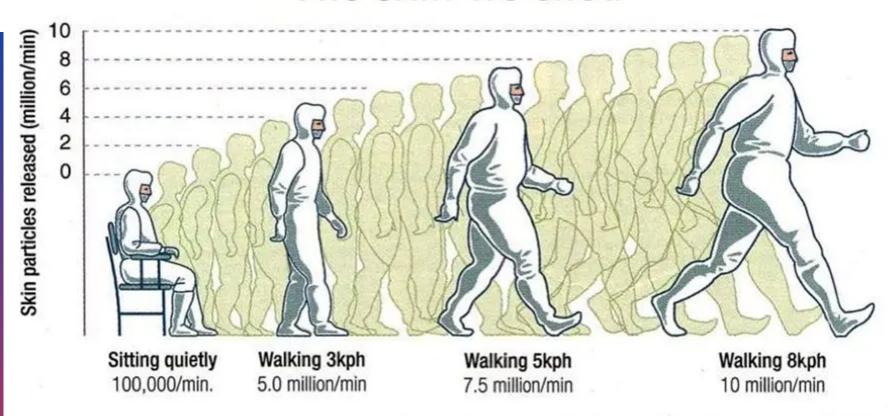
WHO TRS 1044 annex 2 (Sec 2.2)

Processes, equipment, facilities and manufacturing activities should be managed in accordance with the principles of quality risk management to provide a proactive means of identifying, scientifically evaluating and controlling potential risks to quality.


VERY IMPORTANT CONSIDERATIONS

- Contamination control and steps taken to minimize the risk of contamination from microbial, endotoxin/pyrogen and particle sources includes a series of interrelated events and measures.
- These are typically assessed, controlled and monitored individually but their collective effectiveness should be considered together.
- The combined strategy of the CCS should establish robust assurance of contamination prevention.
- The CCS should be actively reviewed and, where appropriate, updated and should drive continual improvement of the manufacturing and control methods.'
- CCS effectiveness should form part of periodic management review.





Operators who smoke would exhale millions of residual tobacco smoke particles, ranging from thousands to over 100,000 particles/l, which would significantly contaminate a cleanroom and violate its strict particle count standards.

The skin we shed

Source: Dr. Ken Goldstein Cleanroom Consultants, and Mike Fitzpatrick, Lockwood Greene, Cleanrooms East 99

WHAT IS A CCS

This is a technical document that evaluates the potential sources of contamination, the potential failure modes, the risk mitigation processes put in place and how its periodically updated.

A contamination control strategy (CCS) is a system that considers all the integral elements of pharmaceutical product manufacturing. Quality Risk Management (QRM) principles that provide a proactive means of identifying, scientifically evaluating and controlling potential risks to quality of the product

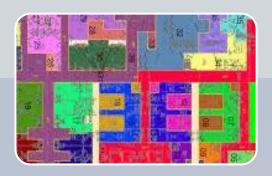
Key Focus Areas for Minimizing Contamination Risks:

- Facility design
- Equipment selection & design
- Processes
- Monitoring systems
- Personnel training & behaviour
- Raw & packaging materials control
- Core Emphasis:
- Quality Risk Management Applied throughout all aspects
- Contamination Control Strategy A documented, integrated approach

Contamination Control Strategy (CCS)-A documented strategy integrating all contamination prevention & control measures

Key Components:

- Holistic Approach aligned with QRM principles
- Covers facility, systems, and processes
- ➤ Elements to be considered section 2.5 of Annex 1
- Identify contamination sources (microbial, particulate, etc.)
- Critical Control Points Identified areas for monitoring
- Effectiveness Assessment Evaluating controls
 & monitoring measures


Must be risk-based and continuously improved Application to non- sterile products

permitted total particle concentration for monitoring

Maximum limi ≥ 0.5 μm/m³	its for total particle	Maximum limits for total pa ≥ 5 μm/m³							
At rest	In operation	At rest	In operat						
3 520	3 520	29	29						
3 520	352 000	29	2 930						
352 000	3 520 000	2 930	29 300						
3 520 000	Not predetermined ^a	29 300	Not predete						

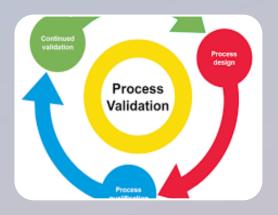
Premises design

HVAC

Filtration levels

Materials of construct

Airlocks


Equipment
Type of Equipment
Isolators/ Open
RABS/

Utilities Nitrogen Compressed WFI PWS Environmental
Control
NVPC
VPC
Temperature
Humidity
Pressure differentials

Personnel

Qualification
Aseptic Techniques
Training

MFS

Gowning Techniques

Cleaning and Disinfection

Cleaning Validation
Types of disinfectants
Preparation
Rotation
Monitoring

CIP/SIP

Process validation and risk assessment

Critical Process
Parameters

Critical Quality
Attributes

Process controls

Process Analytical Technologies

Raw Material Management

Transportation condition

Defined CMAs

Certificate of analysis

DMF type

Bioburden testing on receipt

Sterile material

Preventative Maintenance

Defined SOPs

Defined schedules

Quality risk principles

Checklists |

Handling of breakdowns

Product Containers and closures

Type 1 Glass for ampoules and vials

Approach to leak testing

Sealing mechanisms

Product container development studies

Outsourced Activities

Sterilisation of Rubber stoppers

Gamma radiation

Testing activities (QC and Micro)

Washing of gowns

HVAC Qualifications

SLA/ Monitoring

QMS Components

Root cause

OOS

Deviation management

Excursions

Out of trends

CAPA

CAPA effectiveness

Media Fill Studies/ Validation of the sterilization Processes SAL 10-6 Vendor Qualification

INSPECTION OF A CCS DOCUMENT

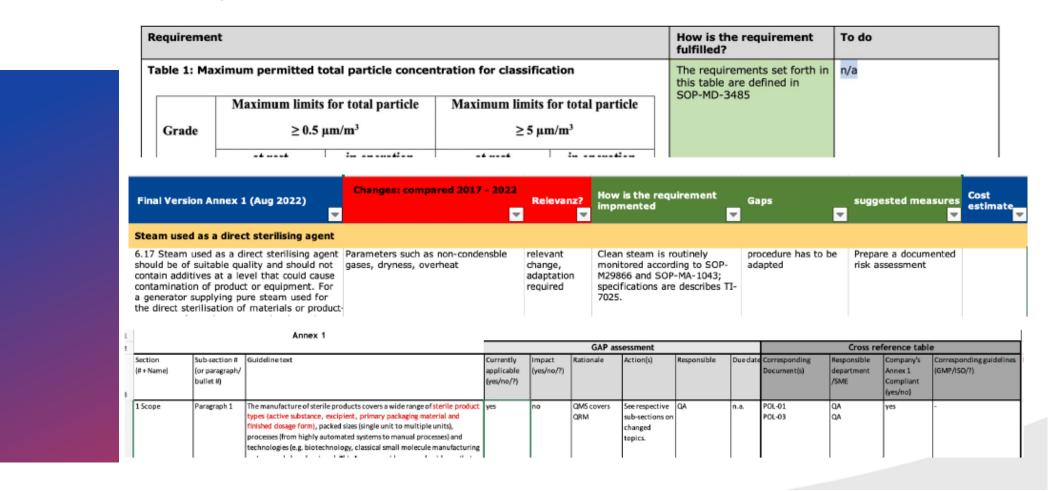
- Ascertain the presence of a contamination control strategy document or policy
- Review the incorporation of risk management principles in identifying of process failure modes and process monitoring and process controls
- Review the proposed risk for each component and how its mitigated.
- ✓ Verify the proposed risk controls that are said to be in place and their suitability and verify the practice and application.
- ✓ Verify the process knowledge from the contamination control strategy.
- Verify the qualification of the contamination controlling team and their knowledge on the subject matters.
- ✓ Verify the approach to continuous improvement and how changes are continuously incorporated.

- AHU designs, area classification and pressure zoning diagrams
- AHU qualifications to show that the ACPH, Recoveries, PDs, NVPC, VPC. Airflow studies for the areas in question are being met.
- People and material flow diagrams showing appropriate change rooms and airlocks that show contamination control e.g. presence of bubble, cascades and sink airlocks and what they will be trying to achieve.
- Appropriateness of the Area in use e.g. Grade D for vial decartoning, vial washing, clarity checks, depyrogenation, Grade A/C for bulk compounding, A/C for filtration, B buffer and A laminar flows for filling.
- SOP for movement of components in all grades of the facility
- SOP for personnel qualification
- SOP for environmental monitoring (NVPC/VPC)
- SOP for disinfectant preparation, monitoring and rotations
- Disinfectant Studies, hold times and efficacy studies

- ✓ Depyrogenation tunnel qualification documents
- ✓ Certificates of conformance of clean room papers, MOC equipment
- Certificates of conformance of aseptic gowns
- Autoclave qualification, depyrogenation tunnel qualification, washing machine qualification, filling LAF qualification and dynamic pass boxes qualification.
- ✓ SOP for CIP/SIP with end points determination.
- ✓ Approach to personnel monitoring
- ✓ Approach to Environment monitoring
- ✓ SOP for line set up and aseptic techniques implored for the same.
- ✓ Interventions handling and controlling
- ✓ Personnel training on aseptic techniques.

- Technical assessment on the type of probes used, allowable length, allowable bends amongst others.
- Sterile filters compatibility studies
- Sterile filters integrity check
- SOP for aseptic assembly of components
- SOP for aseptic filtration and its validation
- SOP for handling of nitrogen and compressed gases on the filling line.
- SOP for lyophilization
- Qualification of the lyophilization recipes
- Handling of the vent filters, lyophilisation, manufacturing tanks, nitrogen, compressed air etc

- Technical assessment on the type of probes used, allowable length, allowable bends amongst others.
- Sterile filters compatibility studies
- Sterile filters integrity check
- SOP for aseptic assembly of components
- SOP for aseptic filtration and its validation
- SOP for handling of nitrogen and compressed gases on the filling line.
- SOP for lyophilization
- Qualification of the lyophilization recipes
- Handling of the vent filters, lyophilisation, manufacturing tanks, nitrogen, compressed air etc



- Continuous particle counts machine SOPs/ URS/ Privileges/Reports
- Filling line design i.e separation of the filling line, from sealing and crimping lines and continuity of the LAF without provisions of any breaks.
- SOPs for line clearance of mobile LAFs and their monitoring.
- SOPs for vendor qualification and ongoing monitoring.
- COAs and testing of incoming raw materials
- SOP for sampling, testing and handling of PWS/WFI
- Aseptic Process Simulation reports

GAP ANALYSIS

Examples:

KEY TAKE AWAYS

- ✓ Annex I emphasizes a risk-based approach (QRM) for contamination control.
- Must be applied throughout the manufacturing lifecycle, not just specific aspects.
- ✓ Guides facility design, equipment controls, procedures, and monitoring.
- Proactive risk identification, evaluation and control
- ✓ Risk-based decisions
- Integration in QMS with management oversight and regular reviews

KEY TAKE AWAYS

- Companies often use non-standard risk assessment tools, or heavily customized versions of standard tools such as FMEA or HACCP. As GMP Inspectors, we need to be able to assess the adequacy of the designs of those tools and approaches.
- Critical Control Points (CCPs) must be monitored and reviewed.
- Regular effectiveness reviews and Continuous improvement

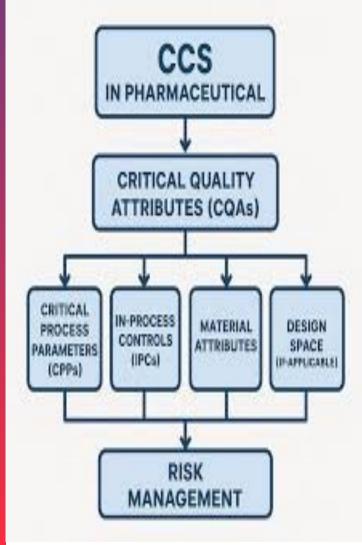
KEY TAKE AWAYS

- Process understanding
- II. Process risks identification
- III. Process controls evaluation
- IV. Process residual risk mitigation
- V. Sterility Assurance Level.

RISK ANALYSIS

QUALITY RISK EVALUATION RECORD

Name of Facility/ Utility /Equipment /Process /Unit Operation: CONTAMINATION CONTROL STRATEGY RISK ASSESSMENT - EYE DROPS MANUFACTURING PROCESS


QRM Ref. No.: QA/QRM/2024/156

System	Sub- systems	r, S: Severity, D: Detectability, RPN: Risk Priority Number. Risk Identification				Risk Assessment & Classification				Existing Controls	Existing Testing	Risk Control							k Assessment & sification
		Function	Failure Mode	Probable causes	Effect	S F		SXP	Risk Accepted (Y/N)			Mitigation Strategy Recommended	Stage	Respons -ibility	Target Date			RPN SXP XD	Risk Accepted (Y/N)
Starting Materials	Starting Material Delivery and Receipt	Delivery and Receipt of materials (raw materials and packaging materials) from suppliers	Delivery vehicle contaminated with Microbial and particulate material	Material containers damaged on transport Delivery vehicle not cleaned.	Starting material contaminated with microbial and particulate material that results in contaminated product to consumer.	4		16		1. Vehicle inspection prior to acceptance of delivery as per SOP CL-WH-020 Attachment 1 2. Material inspection checklist as per SOP CL-WH-020 Attachment 1 3. Containers checked for evidence of spillage, damage, defaced labels, tampering, other irregularities as per SOP CL-WH-001 Checking Incoming Materials for Contamination and Other Irregularities 4. Materials de-dusted in respective dedusting areas before receipt into quarantine, as per SOP CL-QA-031 5. Incoming Materials Receiving, Holding, Quarantine and Storage procedure SOP CL-WH-020	N/A	N/A	N/A	N/A	N/A	4 2			Y
			Material received from unapproved vendor or unapproved vendor site	No vendor management or purchasing system to control buying of materials. Vendors not qualified/audited	Quality and purity of material unknown and potential contamination of starting material resulting in contaminated product to consumer.	4 3	3 3	36	N	Group QA procedure in place for auditing Raw and packaging material suppliers as per Quality Audits Management SOP GQA-036 Delivery note/invoice suppliers verified against Approved Suppliers List SOP CL-QA-080 for raw materials and SOP-QA-083 for packaging materials All vendors (manufacturers and brokers) set up in the Oracle Purchasing Data, purchase orders can only be placed on these vendors Purchasing of materials (raw and packaging) as per SOP CL-PRO-001 Materials specifications in place and testing to specifications as per SOP CL-QC-CHE-015 (raw materials) and CL-QC-CHE-088 (packaging materials).	Each lot of raw material and packaging material tested as per specifications by QC lab.	Raw material vendor audits to be progressed as planned by GQA Vendor assessment of the Irradiation facility (Synegy) used by primary component supplier to be verified by GQA at next audit of the Component Supplier	Ongoing	GQA	Dec 2024	4 2	2 2	16	Y

CCS is mandatory – A documented, integrated strategy for contamination prevention.

- Planning the Inspection Has the CCS document transferred to you as this is vital
- Assess the team that compiled the document
- How old is the document and how often is it revised
- Is CCS part of Agenda of Quality Review
- Always compare the document to what you see in the plant and other documents – LIVING DOCUMENT
- Are the elements listed in the New Annex covered
- Review the RA and interrogate the scoring S?P?D

What are the Key Elements of Contamination Control Strategy CCS?

